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This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation 
(JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking 
to provide and in-depth evaluations and understanding of the factors that limit the scalalabiltiy 
of high-performance computing systems. Many NSF and NASA centers have participated in 
the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS 
grand challenge applications context. Our research work under this program was composed 
of three distinct, but related activities. They include the evaluation of NASA ESS high- 
performance computing testbeds using the wavelet decomposition application; evaluation of 
NASA ESS testbeds using astrophysical simulation applications; and developing an 
experimental model for workload characterization for understanding workload requirements. 

In this report, we provide a sumrnary of findings that covers all three parts, a list of the 
publications that resulted from this effort, and three appendices with the details of each of the 
studies using a key publication developed under the respective work. 



SUMMARY OF FINDINGS 

Wavelet D e c o m - m n  On High-Performance Computers 
In this study, we have mapped the multi-resolution Wavelet algorithm, developed by Mallat 

. .  

[Mal89], onto the high-performance parallel computers and applied it to remotely sensed data 
from NASA's Landsat-Thematic Mapper images. Target platforms were the ESS MasPar MP- 
1 and MP-2, and the ESS Intel Paragon. The MasPar has provided two orders of magnitude 
improvement over a workstation and exhibited good scalability. The Intel Paragon produced 
one order of magnitude improvement and required knowledge about the network operation 
and special effort to scale beyond 4 processors. 

Astmghvsical Simulations on High-Performance ComDuters 
In this study some of the sources of overhead were identified and measured for Nbody and the 
Particle In Cell (PIC) ESS applications. Among the observed sources of overhead are the 
programming model, programming style, and the communications patterns. With the 
sophistication of multicomputers and in the light of the lack of comparably powerful compiler 
technology, parallel machines are much less forgiving than uniprocessor environments. Subtle 
changes in programs can increase or decrease overhead significantly. Some types of overhead can 
be reduced by following better programming practices and some can be reduced by converting them 
to less costly overhead activities. The dominant type of overhead is communications and it often 
represents a real challenge to scalability. While it is not considered a good programming practice, 
duplication redundancy can effectively help reduce the effect of communications. Efficiency in most 
of the cases, specially when data sets were large enough, was greater than 50% which indicates that 
progress in high-performance computing is consistent with the needs of scientific parallel 
simulations. 

Parallel Work load c haracte rization 
This study introduced a parallelism-based methodology for an easy to understand representation 
of workloads. The method is architecture-invariant and can be used effectively for the 
comparison of workloads and assessing resource requirements. A method for comparing 
w^&l ulluuads ^ 

uses the normalized Euclidean distance to provide an efficient means of comparing the 
workloads. The notion of centroid coupled with distance (similarity) among pairs of workloads 
provide the basis for quantifiable analysis of workloads to make informed decisions on the 

based on the Gotion of zmtmid of pzirdlel insewtion was introduced. Tkis methd 
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composition of parallel benchmark suites. Analysis of existing benchmarks is also provided for 
by this model in which the centroid sheds light on the hardware resource requirements and how 
the benchmark is exercising the target machines, and the distance among workload pairs allows 
identifying possible correlation. 
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Abstract 

Wavelet transforms are distinguished with many favorable characteristics, over other popular 

signal processing techniques such as the Fourier transform. Due to the recent discovery of a fast 

sequential algorithm for Wavelet, by Mallat, the past few years have seen a remarkable increase in 

applying Wavelets to real-life problems, in which speed is critical. In this paper we present and 

compare efficient Wavelet decomposition algorithms on different parallel architectures. We report 

and analyze experimental measurements, using NASA remoteiy sensed images. The results show 

that the algorithms achieve significant performance gains on current high-performance parallel 

systems and meet scientific applications and multimedia requirements. 

Index Terms: Parallel Processing, Experimental Performance, Image Processing, and Wavelets 
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1. Introduction 

Traditionally, Fourier transforms have been utilized for signal analysis and reconstruction. 

However, Fourier representations do not include any local information about the original signals. 

Therefore, windowed Fourier transforms, particularly Gabor transforms [Chu92], have been 

introduced. With a windowed Fourier transform, a signal is analyzed after filtering by a fixed 

window function. Such window functions produce the localization effect that traditional Fourier 

transforms lack. However, since the envelope of the signal is the same for all frequencies, a 

windowed Fourier transform uniformly samples the time-frequency plane. Depending on the 

applications, for example speech analysis or image feature extraction, it can be of interest to have a 

more flexible division of the time-frequency plane to provide moTe "timedetails" for high 

frequencies. Wavelet transforms provide this type of sampling by frlkring the signal with 

translations and dilations of a basic function, called "mother Wavelet". 

In the image processing domain, Wavelet transforms have been proven to be very useful for 

such tasks as image compression and reconstruction, feature extraction, and image registration 

[Chu92, Dja92, Dau92, Md89, Str89, Lem941. Furthermore, the multi-resolution scheme 

developed by Mallat Md89, Cod92, Num921 provides a very fast algorithm which increases the 

importance of wavelets for on-line processing of imagery data. The speed of such processing is 

especially important for managing remotely sensed data whose already massive amount will grow 

even bigger with such programs as NASA's Earth Observing System (EOS). 

In this study, we are investigating the parallel implementation and performance of the Mallat 

algorithm on parallel architectures. Coarse-grain algorithms for both the Intel Paragon are 

developed. Measurements are collected, analyzed and compared with the fine-grain MasPar 

experimental results [Chan95, El-Ghaz941. Test image data from NASA's Landsat-Thematic 

Mapper (TM), were used. The results will show that the proposed algorithms can achieve orders of 
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magnitude performance improvement on contemporary high-performance computing systems, 

when compared typical desktop workstations. Such performance can satisfy real-time image 

processing needed for large scientific databases, such as NASA's EOS Data Information System 

(EOSDIS), and multimedia applications. This paper is organized as follows. Section 2 provides 

an overview of the discrete Wavelet transform and the M a t  algorithm. Section 3 provides an 

overview to the Jet Propulsion Lab (JPL) Intel Paragon architecture, that was used in this study. 

Section 4 discusses the algorithms and implementation issues on the different high-performance 

computing architectuxes. Timing results and performance analysis are given in section 5 .  

Conclusions are given in section 6. 

2. Multi-Resolution Wavelet Decomposition 

As described in section 1, a Wavelet transform is defined by the translations and the dilations 

of a basic function called "mother Wavelet." Depending on the application, continuous or discrete 

transforms may be utilized. Also, special conditions can be imposed on the mother Wavelet which 

leading to orthonormal bases of wavelets, which is particularly useful for data reconstruction 

[Dau92]. In this paper, we will only consider Wavelet transforms for the processing and analysis 

of 2-D image data. Thus, discussion will be limited to discrete wavelets, particularly those with 

orthonormal bases. 

According to Mallat [Mal89], an orthonormal basis of wavelets can be defined by a scaling 

function and its corresponding conjugate filter L. In this case, the Wavelet decomposition of an 

image is similar to a quadrature mirror fdter decomposition with the low-pass filter L and its mirror 

high-pass filter H. The decomposition of a 2-D irriige also assumes ihat &e milti-resolution 

representation of the image space is "separable". This means that the two axes x and y can be 
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treated independently in the decomposition as well as in the reconstruction. This decomposition is 

summarized in figure 1. 

LLI<+l*- Ik+ l  - 

Multi-Resolution Wavelet Decomposition 

l&lllkl 

Columns ). Lk+l *= 

The input image is first convolved along the rows by the two filters L and H, and the 

horizontal dimension of these two intennediate results is decimated by 2. Each of the two 

“column-decimated“ images, Lk+l and Hk+l , is then convolved along the columns by the two 

filters L and H and decimated along the rows by two. This decomposition results into four 

images, LLk+l , LHk+l , HLk+l and HHk+l . Each of these images, such as the low/low 

image, LLk+l , is taken as the new input to perform the next level of decomposition and so on. 

H 

The Multi-Resolution Wavelet decomposition algorithm can be described by the following 

sequence of steps: 

LW+1 

4 

L Rows .c H Lk+l 

Columns * Hk+l  b 

H Rows .). H Hk+l 



Start from the image I() , level 0 of the multi-resolution sequence (k=O). 

High-Pass and low-pass filterings of image rows at level k. 

Decimate by 2 the number of columns: results in and Lk+l and Hk+l.  

High-Pass and low-pass filterings of image columns at level k. 

Decimate by 2 the number of columns: results in LLk+l , LHk+l, HLk+l , and HHk+1 . 
The low/low result, LLk+l can be renamed Ik+l , since it corresponds to the compression 

of the original image at level k+l . 
Set k to the next level of decomposition, k+l, and continue the iterative process from (1) to 

(4) until the desired level of decomposition is achieved. 

Wavelet reconstruction is obtained by a similar reverse process, which is graphically 

described in figure 2. 

Columns Rows 

I L L * r l l n  t e rp 0 lat e 1 y - h  
Rows by 2 - 

Y- 
F H n  t e rpo lat e ) c F ) J  

Rows by 2 
I 

Multi-Resolution Wavelet Reconstruction 

m 
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3. Overview of the Parallel Systems 

Experimental measurements for this work were obtained using the NASA Earth and Space Science 

(ESS) high-performance computing testbeds. In particular, the GSFC MasPar MP-2 and the Jet 

Propulsions Lab (JPL) Intel Paragon were used. A brief description of these systems is given 

below. 

3.1 The MasPar 

MasPar Computer Corporation currently produces two families of massively parallel- 

processor computers, namely the MP-1 and the MP-2. Both systems are essentially similar, except 

that the second generation (MP-2) uses 32-bit RISC processors instead of the 4-bit processors 

used in MP-1. The MasPar MP-1 (MP-2) is a fine-grained, massively parallel computer with 

Single Instruction Multiple Data (SIMD) architecture. The MasPar has up to 16,384 parallel 

processing elements (PES) arranged in a 128x128 array, operating under the control of a central 

array control unit (ACU). The processors are interconnected via the X-net into a 2-D mesh with 

diagonal and toroidal connections. In addition, a multistage interconnection network called the 

global router (GR) uses circuit switching for fast point-to-point and permutation transactions 

between distant processors. A data broadcasting facility is also provided between the ACU and the 

PES. Every 4x4 grid of PES constitutes a cluster which shares a serial connection into the global 

router. For more information on the MasPar, the reader can consult more specialized MasPar 

references [Bla90], [Mas92], [NicW]. 

3.2 The Intel Paragon 
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The Paragon has a total of 64 nodes organized into a 16x4 mesh, of which 54 are compute nodes and 8 

are service nodes. Each node, an Intel GP node, is essentially a separate computer with one compute 

and one communication i860 processors. Each of the 56 compute nodes has 32 MBytes of memory. 

The service nodes include: 4 VO nodes with 32 MBytes memory and a 4.8 Gbyte RAID each, 1 HIPPI 

node with 32 MBytes memory, 1 User Service node with 32 MBytes memory, and 1 boot node with 32 

MBytes memory and a 4.8 Gbyte RAID. The peak performance (using 56 nodes) is 5.6 GFlops in 

single precision with an aggregate memory space of 1.8 GBytes and aggregate online disk capacity in 

excess of 20 GBytes. The programs can be developed in C or FORTRAN which are supported by NX 

library routines for communication and synchronization purposes. 

4. Parallel Implementations 

In order to allow accurate measurements of communications, the message passing programming 

model was used in the Paragon. All applications were developed in C and augmented with PVM 

communication calls. The applications used the "single program, multiple data" (SPMD) 

programming model. In this model, the same program runs on each node in the application, but 

each node works on a part of the data. However, because each node is an independent computer, 

one can also use other programming models. One example is the "manager-worker" model, in 

which a "manager" program starts up several "worker" programs on other nodes, then gathers and 

interprets their results. 

According to the previous descriptions, the Wavelet algorithm can be defined as a combination of 

successive frfferings and decimations. Our parallel implementation will concentrate on these two 

operations, focusing on minimizing the communication costs by reducing the number of 

communication transactions and the distance between the communicating processors. 
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4.1 The Fine-Grain SIMD Implementations 

On the MasPar MP-2, two algorithms were used, referred to as systolic and systolic with dilution, 

See [El-Ghaz94] and [Chan95] for details. Both of them store the filter in the control unit and 

broadcast the filter elements from last to first. After each broadcast, the algorithm requires one 

multiply and accumulate, followed by shifting the partial result to the left. The algorithm repeats 

this step for as many times as the size of the filter with partial results being accumulated and built 

up in a systolic fashion. By the last step, each (logical) processor ends up with one pixel result. 

The difference between the two algorithms is in the way decimation is handled. In the systolic 

algorithm, decimation is accomplished using the global router. In the dilution algorithm, the filter 

is diluted or stretched to be aligned with the relevant pixels, thus avoiding the use of the MasPar 

global router. 

When the image data is larger than this basic size, a “virtualization” of the PE array has to be 

defined. Two virtualization methods were considered, “cut and stack” and hierarchical. The 

hierarchical gave the best results since it improves data locality for the underlying computations 

[Chan95]. In the “cut and stack virtualization scheme, the image is cut into squares corresponding 

to the size of the basic parallel array. For example, if the size of the image is 512x512, we will 

need to stack 16 layers of image data in the 128x128 parallel array. The hierarchical virtualization 

divides up the image into subimages and allocates each subimage to a different physical processor. 

The MasPar systolic algorithm was shown to be processor optimal[El-Ghaz94]. 

4.2 The Coarse-Grain MIMD Implementations 
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Reducing the number of transactions was done by distributing stripes of the image rather than 

blocks limiting exchange of information to one neighbor instead of two, which would have been 

needed should image data be distributed by blocks, see figure 3. Secondly, as seen in figure 4, 

those slices are distributed in a snake-like fashion in order to limit communications to immediate 

neighbors only. Those communications transactions are needed at the end of each decomposition 

level in order to build a guard zone around the processor local data from the decomposition results 

in its neighbors before the next decomposition level starts. Using a striped data decomposition, 

such zone is only needed for column filtering. In block data decomposition, guard zones need to 

Striped 

Reducing Communication Transactions Via Striping 

I L b u L i  
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Allocating image sub-domains to 
Processors 

Reducing the Paragon Communications Distances Via a Snake-Like Domain 

Decomposition 

luluA 

be established for both the row and column filtering. The depth of the zone is in the order of the 

filter length. Guard zone data is brought from the east neighbor in for row filtering, and from the 

south neighbor for the column filter. 

5. Experimental Results 

Wavelet dexomposition of a 512x512 Landsat-Thematic Mapper image of the Pacific Northwest 

area was used for our experiments. The experimental results for this image are given when filters 

of sizes 8,4, and 2 are used along with 1,2, and 4 levels of decompositions, respectively. It 
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should be noted that as the number of decomposition levels increases, more communication is 

required. Increasing the filter size, however, increases the computational dominance in this 

- problem. 

5.1 Intel Paragon Results 

Paragon for F = 8 ,  L =  1 
7 
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The Paragon scaling results are shown in figures 5 through 7. Scalability till 4 processors were 

obtained using the straight forward data distribution, where no arrangement was made to limit 

communication to nearest neighbors. The reason for the 4 can be seen from figure 4. Beyond 4 
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processors, processors at the right edge of the network attempt to communicate with those in the 

leftmost column of the following row. Due to dimension routing, where messages in this case 

would travel along the horizontal dimension first before moving along the vertical, conflicts would 

be created. For the small amount of computations in the Wavelet operations, this creates an 

excessive communications overhead that prevents scalability. 

The snake-like data distribution on the other hand does not create these conflicts and limit 

communication to a distance of one, thus creating the opportunity for relatively better scalability. 

The Paragon in general, however, shows modest scalabiltiy. Communication cost was observed 

from the measurements to be the limiting factor still. This can be also noted from figures 5 through 

7. With the inc- in communications requirements, due to the increase in the levels of 

decomposition, the speedup c w e  continues to drop, with best results seen at one level of 

decomposition and worst at 4 levels. 

5.3 Comparative Results 

MasPar MP-2 (16K) 

Intel Paragon 1 Proc. 

32 Proc. 

DEC 5000 Workstation 

FWL1 

.0169 

4.227 

.613 

5.47 

F4/L2 

.0136 

3.45 

.632 

4.54 

F2/L4 

.0121 

2 .78  

.6621 

4.11 
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Comparative Wavelet Decomposition Performance Measurements 
IU2k.l 

Table 1, lists the key measurements to help comparing the performance of the mentioned machines. 

From the table, it is clear that for the machine sizes and configurations used the MasPar is still 

favorably performing. This is consistent with SIMD machines that have been know to perform 

well in image processing applications. The MasPar, with the given configuration, is capable of 

processing 30 images or more per second. Thus for real-time video, multimedia applications, and 

scientific and medical applications high-performance computing is quickly asserting its presence. 

6. Conclusion 

In this study, we have mapped the multi-resolution Wavelet algorithm, developed by Mallat 

[Mal89], onto the high-performance parallel computers and applied it to remotely sensed data from 

NASA's Landsat-Thematic Mapper images. The MasPar has provided two orders of magnitude 

impmvement over a workstation, for the specific hardware described here. The Intel Paragon 

exhibited one order of magnitude improvement and required knowledge about the network 

operation and special effort to scale beyond 4 processors. 
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An Empirical Study of Parallel Overhead and 
Scalability of Scientific Simulations 

Ab 8 t rac t 

High-Performance Computing Systems based on parallel processing 
have the potential for satisfying the rapid growth in 
computational requirements of large physical simulation problems, 
at economical costs. As such machines grow in size, however, 
parallelization overhead grows in a manner that can limit 
scalability. This work sheds some light on the sources, 
dynamics, and magnitudes of the different types of overhead and 
their impact on performance. Results are obtained through 
experimental measurements of NASA Earth and Space Sciences (ESS) 
astrophysical simulations, running on the JPL/ESS Intel Paragon 
and CRAY T3D. 
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1. INTRODUCTION 

Experimental HPC systems based on parallel processing 
architectures offer the opportunity to achieve orders of 
magnitude performance gain for existing problems as well as make 
feasible the solution of problems of much greater size and 
resolution. Information derived from evaluation studies can 
enhance our understanding of the potential growth path of high- 
performance computing and reveal possible difficulties that 
inhibit advances. The Joint NSF/NASA Initiative on Evaluation 
(JNNIE), is a national evaluation activity which involves NSF and 
NASA centers and, thus, includes a large number of testbeds and 
applications. JNNIE is concerned with such issues as application 
characterization, usability, macro performance, and micro 
performance. In this work, which is conducted in the framework 
of JNNIE, micro-performance only is considered. Micro- 
performance is concerned with metrics and structured evaluation 
methods to discover the sources of performance degradation in the 
basic observable behavior of a machine, against an imaginary 
ideal. Examples of these sources could be starvation, latency, 
contention, and overhead. Micro-performance measurements 
collected here have focused on interprocessor communications 
overhead, redundancy overhead, load-imbalance overhead, and time 
spent doing useful work. We refer to this set of measurable 
quantities as the performance budget. The target applications 
were all selected from NASA Earth and Space Sciences (ESS) 
domain. The measurements presented here are from two specific 
applications: (1) the N-body simulations, and the (2) Particle- 
In-Cell (PIC) simulations. The target high-performance computing 
platform for this study were the ESS Intel Paragon and CRAY T3D 
at the Jet Propulsion Laboratory (JPL). 

This paper is organized as follows. Section 2 discusses the 
selected NASA ESS applications as well as the target high 
performance computing platforms for this study. Section 3 
discusses the types of overhead measurements collected. Section 4 
presents the measurements collected for the N-body and the PIC 
simulations, respectively. Observations and conclusions are 
derived in Section 5. 

2. APPLICATIONS AND SYSTEM SCOPE 

A s  mentioned earlier, the NASA Earth and Space Sciences (ESS) 
applications considered in this work are the N-body simulations 
and the Particle-in-Cell (PIC) simulations. The classical N-body 
problem simulates the evolution of a system comprising n bodies 
(particles), under the influence of forces exerted on each body 
by tne whole system. Typical d ~ m a i i ; ~  of applicaticn icclude (i! 
astrophysics, where the bodies can be viewed as stars or planets 
in a galaxy, (ii) molecular dynamics, where the bodies are 
molecules or atoms, and (iii) plasma physics, where the bodies 
are ions or electrons. The example problem we use in this paper 
is a simQlation of interacting galaxies from astrophysics. The 
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problem studies how the positions and velocities of stars in the 
galaxies evolve with time under the gravitational forces that the 
stars exert on one another. 

Numerical Particle-Mesh techniques, also known as Particle-In- 
Cell (PIC), are commonly used to model plasmas, gravitational 
N-body systems, and both compressible and incompressible fluids 
[3,9,12]. They represent a popular variant on particle simulation 
techniques utilizing a numerical grid to more effectively compute 
the forces acting on the particles. The naive particle-particle 
approach is only useful in modeling a system with a small number 
of particles (<10000) because of the very rapidly growing 
computational complexity. Compared to the most effective 
solutions, particle-mesh techniques work better when the particle 
density distribution is relatively uniform. Tree codes, on the 
other hand, are favored in systems with large density contrast. 

These two applications were ported to the target platforms and 
measurements were collected to study overhead and scalability. 

2 . 1  T h e  T a r g e t  S y s t e m s  

The JPL/ESS Paragon and T3D were used to conduct this study. The 
Paragon has a total of 64 nodes organized into a 16x4 mesh of 
which 54 are compute nodes and 8 are service nodes. Each node, 
an Intel GP node, is essentially a separate computer, with one 
compute and one communication i860 processors. Each of the 56 
compute nodes has 32 MBytes of memory. The service nodes 
include: 4 1/0 nodes with 32 MBytes memory and a 4.8 Gbyte RAID 
each, 1 HIPPI node with 32 MBytes memory, 1 User Service node 
with 32 MBytes memory, and 1 boot node with 32 MBytes memory and 
a 4.8 Gbyte RAID. The peak performance (using 56 nodes) is 5.6 
GFlops in single precision with an aggregate memory space of 1.8 
GBytes and aggregate online disk capacity in excess of 20 
GBytes. The programs can be developed in C or FORTRAN which are 
supported by NX library routines for communication and 
synchronization purposes. 

The Cray T3D is a MIMD system with physically distributed but 
globally addressed memory. The JPL T3D has a Cray Y-MP as its 
host system and currently consists of 256 processors each with 2 
MWords (16 MB) of DRAM memory. About 25% of the memory is 
required by the UNICOS microkernel, therefore, the users can 
expect to have 12 MB of memory for program and data. Each PE is 
a 64-bit DEC Alpha microprocessor with a frequency of 150 Mhz 
capable of achieving 150 MFLOPS. The memory interface between 
the processor and the local memory extends the local virtual 
address space to a global adderess space. The Alpha processor 
has a direct-mapped data cache organized into 256 lines with 32 
bytes per line. Programs can invalidate the local cache as 
needed to maintain the coherencey. Also, remote data entering a 
processor's local memory can invalidate the corresponding cache 
line. The system is space-shared into partitions where the 

3 



numbers of processors are powers of two. A node consists of two 
processors sharing a network support logic. All processors are 
connected by a bi-directional 3-D torus system interconnect 
network. This topology ensures short connection paths and high 
bisectional bandwidth. Channels between nodes are two bytes wide 
and the peak interprocessor communication rate is 300 MB/sec. in 
every direction through the torus. The system software includes 
FORTRAN (a superset of FORTRAN 77 including many FORTRAN 90 
array syntax statements), C, and C++ compilers as well as tools 
for application performance analysis and parallel code 
debugging. The PVM is currently supported as are some lower 
level Cray libraries for passing data and messages among 
processors. 

In order to allow accurate measurements of communications, the 
message passing programming model was used. All applications 
were developed in C and augmented with the appropriate NX or PVM 
communication calls. The applications used the "single program, 
multiple data" (SPMD) programming model. In this model, the same 
program runs on each node in the application, but each node 
works on a part of the data. However, because each node is an 
independent computer, one can also use other programming models. 
One example is the "manager-worker" model, in which a "manager" 
program starts up several "worker" programs on other nodes, then 
gathers and interprets their results. 

In our implementations, the PIC application used a worker-worker 
SPMD model, while the N-body used the manager-worker model. 
With this model, the manager creates the tree where all spatial 
information about all particles are inserted. Then, the manager 
broadcasts the tree to all nodes. Each node manipulates only a 
subset of the particles in order to compute the essential forces 
that interact with those particles. Therefore, each node does 
its work without access to data that is being held by other 
nodes. Each "worker" node updates the information of all of its 
particles. The "worker" node, then, sends its updated particles 
to the "manager" node in order to create an updated tree which 
is to be used in the next time-step. 

2.2 N-body Problem and the Barnes-Hut Method 

The general N-body problem nay be stated as the following set cf 
ordinary differential equations [151: 

In astrophysical simulations, the force term, Fij is the 
Newtonian gravity: 
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The gravitational force is "long-range", meaning that there is no 
cutoff point, beyond which the force may be considered 
negligible. In principle, it is necessary to evaluate the entire 
sum on the right-hand side of (2) at each time step of the time 
integration. Naively, this requires O(N2) operations at each 
time step. 

The Barnes-Hut (BH) 121 algorithm is one of a number of 
algorithms [1,2,8,10,111 that use a multiple expansion and a 
hierarchical data structure to reduce the complexity of computing 
long-range interactions like gravity. The multipole expansion 
allows one to treat a collection of bodies as a point mass 
(perhaps with quadrupole and higher moments) located at the 
center of mass. In Figure 1, the force on point Xi may be 
evaluated approximately as: 

The quality of the approximation in ( 4 )  is a decreasing function 
of the ratio: b/lRcml, where b is the radius of the collection of 
bodies. In the BH algorithm, multipole moments are computed for 
cubical cells for an octtree of variable depth. The tree is 
constructed at each time step with the following properties: 

1. The root cell encloses all of the bodies. 
2. No terminal cell contains more than rn bodies. 
3 .  Any cell with rn or fewer bodies is a terminal cell. 

A typical two-dimensional BH tree with r n = l  is shown in Figure 2. 

To compute the force on a body, one traverses the tree starting 
at the root. Any time a cell with a sufficiently small value of 
b/lRcml is encountered, the multipole approximation is utilized. 
Thus, distant cells, which comprise many individual bodies, may 

Point of 

Far enough away 

Equivalent 
particle 
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Figure 1. Approximation of particles by a single point mass. 

Figure 2. A 2-D particle distribution and its quadtree. 

be approximated in unit time. The resulting algorithm, when 
applied to all bodies, requires O(N.logN) operations to evaluate 
the forces on all N bodies. 

In the BH method, the force-computation phase within a time-step 
is expanded into three phases: 

1. Building the tree: The current positions of the particles are 
first used to determine the dimensions of the root cell of the 
tree. The tree is then built by adding particles one by one into 
the initially empty root cell, and subdividing a cell into its 
four children as soon as it contains more than a single particle. 

2. Computing cell centers of mass: An upward pass is made through 
the tree starting at the leaves, to compute the center of mass of 
internal cells from the centers of mass of their children. 

3 .  Computing forces: The force-computation phase consumes well 
over 90% of the sequential execution time in typical problems, 
and is described in detail below. 

The tree is traversed once per particle to compute the net force 
acting on that particle. The force-computation algorithm for a 

following test recursively for every cell it visits: If the 
cell's center of mass is far enough away from the particle, the 
entire subtree under that cell is approximated by a single 
particle at the cell's center of mass, and the force this center 
of mass exerts on the particle is computed. If, however, the 

particle rrc-rvtrr  3 L a L L a  a L  - r t  the root of t he  t r e e  2nd cofid~cts the 
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center of mass is not far enough away from the particle, the cell 
must be "opened: and each of its subcells visited. 

4 .  Updating particle properties: Finally, the force acting on a 
particle is used to update such particle properties as 
acceleration, velocity and position. This phase does a constant 
amount of work per particle, so its computational complexity is 
O(N). 

Conceptually, the main data structure in the application is the 
Barnes-Hut tree. Since the tree changes every time-step, it is 
implemented in the program with two arrays: an array of bodies 
that are leaves of the tree, and an array of internal cells in 
the tree. Among other information, every cell has pointers to its 
children, and it is these pointers that maintain the current 
structure of the tree. The structure representing a body holds 56 
bytes of data in two dimensions. There is also a separate array 
of pointers to bodies and one of pointers to cells. These arrays 
are used by the processors to determine which bodies and cells 
they own. Every processor owns an equal contiguous chunk of 
pointers in these arrays, and each chunk is larger than the 
maximum number of bodies or cells a processor is expected to own. 
The total data space of the program is linearly proportional to 
the number of bodies for both uniform distributions (balanced 
tree) and non uniform ones. 

The domain decomposition technique used here is Costzones 
partitioning [161. In this method, the summation of works 
associated with all particles is used to divide the workload 
equally among the processors. This technique is very simple and 
does not have much computational overhead associated with it, 
when compared with other popular methods, such as the Orthogonal 
Recursive Bisection (ORB) [151. 

The Costzones technique takes advantage of another key insight 
into the hierarchical methods for classical N-body problems, 
which is that they already have a representation of the spatial 
distribution encoded in the tree data structure. Consequently, 
one can partition the tree rather than partitioning the space 
directly. In the Costzones scheme, the tree cell's children laid 
out from left to right in increasing order of child number. 
The cost of every particle, which is the total amount of 
interactions between the particle and all others, as counted in 
the previous time step, is stored with the particle. Every 
internal cell holds the sum of the costs of all particles that 
are contained within. 

The total cost in the domain is divided among processors so that 
every processor has a contiguous, eqi-ial range or zone of costs 
(hence the name Costzones). For example, a total cost of 1000 
interactions would be split among 10 processors so that the zone 
comprising costs 1-100 is assigned to the first processor, zone 
101-200 to the second, and so on. Which costzone a particle 
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belongs to, is determined by the total cost up to that particle 
in an inorder traversal of the tree. 

In our implementation, building the tree is done at a manager 
node. After building the BH tree, the manager broadcasts the BH 
tree to the worker nodes. Therefore, an identical copy of the BH 
tree would be available in each processor. 

Since each processor has a subset of the bodies and a whole copy 
of the BH tree, there is no more need for interprocessor 
communication. In fact, the original serial code for force 
evaluation may be used completely unchanged. The parallel 
algorithm will produce results identical to the serial algorithm, 
except for a very small amount of roundoff error which results 
from the non-associativity of floating point operations. 

2.3 The PIC Problem 

In the PIC approach, the force equation is based on continuum 
representations of the charge density and electric field. 
Poisson’s equation 

relates the charge density p(x) to the electric potential $. The 
electric field is 

and the force on particle i is 

where qi is the charge on particle i and Xi is the location of 
it. To solve these equations, finite difference approximations on 
a grid are used in the following four steps: 

1) Calculate p at each grid point based on the positions of 
particles. In this step, a Cloud-In-Cell charge assi;.nment scheme 
is employed. If the particle position Xi is located between the 
two grid cell centers xg-l and xg, the charge assigned to each of 
these cells is given by 

where Ax is the grid cell size. 

This operation scales as O ( N p ) ,  the number of particles. 
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2) Solve (1) using FFT. This scales as U!Ng.log Ng), where Ng is 
the number of grid points; then evaluate E at each grid point 
using (21 ,  which scales as O(Ng). 

3 )  Use interpolation and ( 3 )  to evaluate the force on each 
particle. In this step, the finite difference approximation 

is used. 

This step scales as Np. 

4 )  Solve particle equations of motion, that are, 

where Vi and mi are the velocity and mass of particle i, 
respectively, to find the new locations and velocities of the 
particles. This scales as O(Np). 

Combining these steps, the whole scheme has the complexity of 
O(Np + Ng.lOg Ng) . 
In general, these four steps involve computation and 
communication between the data structures representing the field 
data and the particle data. The field data is represented as an 
array where domain neighborhood relationships are maintained by 
the indices of the array cells. The particle data array, 
however, maintains no special relationship to neighboring 
elements. Domain decomposition for PIC codes E4, 5 ,  121 can be 
used for both particles and fields. The load on any processor 
has the components of particle related and grid related 
operations. The objective should be to adjust the domain 
boundaries so that the total load is distributed over the 
processors evenly. It is possible therefore that one processor 
might spend more of its time on particles and less on grid 
points than another processor,. and yet both would complete at 
the same time. This benefit cannot be realized for electrostatic 
codes because the global character of Poisson's equation forces 
the processors to be synchronized both at the start and the end 
of the field solver equation. 

The developed parallel code is an implementation of 3 - D  
Electrostatic PIC Simulation. The particles are finite sized 
charge clouds which are divided among the processors uniformly. 
The particle data structures are vectors holding the position 
and velocity information. The field data structures are 3 - D  
arrays with wrap-around boundary conditions. The algorithm 
includes an adaptive time-step adjustment scheme in order to 
prevent the particles from moving any further than neighboring 
grid cells. Each processor processes its own particle data when 
charging corresponding grid points. These charges are collected 
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from the processors with a global summation operation. A 3 - ~  
parallel FFT routine, realized using slab decomposition and a 
Paragon 1-D FFT library routine, calculates the potentials of 
the grid locations from grid charges. Note that right before and 
after this field solving process, every processor will have the 
global charge and field information, respectively. This type of 
decomposition results in a parallel execution time with an input 
size dependent component and a constant one which is related to 
the grid size, should the grid remain the same for simulations 
of different number of particles. For any realistic simulation, 
the number of grid cells is much smaller than that of the 
particles. For the 3-D FFT, the data are stored in such a way 
that each “planeii formed by two of the dimensions is entirely 
within one processor and the other dimension is divided among 
the processors. The 3-D transform is performed by factoring it 
into 1-D transforms along each of the dimensions. Thus, two of 
these dimensions can be processed by transforms within single 
processors, without communication. To transform along the other 
dimension within single processors, the data are rearranged 
among the processors so that the slabs contain this third 
dimension, and one of the other dimensions is now divided among 
processors. Therefore, the decomposition of data with regard to 
the dimensions is different in the space and frequency domains. 
At the end, every processor will have a slab of the electric 
potential data which must be made global for electric field 
calculations. 

3 .  PERFORMANCE BUDGET 

The, intended performance measurements are designed to correlate 
the system scalability to parallel overhead, from the 
user/application perspective. Therefore, our performance budget 
model relies on application instrumentation and breaks the 
overall parallel execution session into non-overlapping useful 
processing time and a number of overhead components. Desirable 
architectural features, such as the ability to hide latency, as 
well as good parallel programming practices, such as the use of 
asynchronous rather than synchronous communications, are 
therefore favored by this model. The types of overhead 
identified here are the average communication overhead, 
imbalance overhead, and redundancy overhead. Each of these 
types of overhead is reported as a percentage of the parallel 
execution time. The general programming model used was, again, 
the SPMD model due to its popularity. To facilitate the 
communications overhead measurements, the code was developed 
using the message-passing paradigm. 

The communications overhead is measured directly and averaged 
over all processors used for the computation. A communication 
transaction is measured from the point of initiating the 
communication system call, till the call returns. Redundancy 
overhead refers to the additional operations needed to facilitate 
the parallelization. TWO sources of redundancy are 
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differentiated here. The first is the parallel duplication, in 
which the same operation is duplicated using the same data values 
at all processors. The second is the unique redundancy, in which 
different or similar but not identical processing is done to 
allow the parallelization. Example of the duplication redundancy 
is the initialization of a loop counter by the same value at all 
processors. Example of the unique parallelization redundancy is 
operations that pertain to domain decomposition, where each 
processor tries to figure out which part of the data it will be 
working on. Given n processors, (n-1) copies of the duplication 
redundancy and all unique redundancy are averaged over all 
processors to produce the redundancy overhead. Imbalance/wait 
overhead is the time difference between the max completion time 
and the minimum completion time over all processors. All timing 
measurements were wall-clock timing and timed activities were 
selected such that no global knowledge of time was needed. 

4. EXPERIMENTAL MEASUREMENTS ON THE PARAGON AND T3D 

Measurements of instruction mixes and serial execution were 
collected as a first attempt to understand the characteristics of 
the underlying simulation codes and the consequent serial 
execution behaviors. The Nbody was foud to have a higer 
percentatge of integer operations (almost 60%) due to the tree 
construction and ,manipulations, compared to only 32% in the case 
of PIC. PIC, however, was characterized with high memory 
requirements (almost 40% of the instructions are load/store) due 
to comparisons with all particles, and higher floating point 
operations (23%) mostly due to field calculations. In Nbody, 26% 
of the instructions only were load/store and 14% were floating 
point operations. 

Table 1 and Table 2 show how such instruction mixes tarnslated 
into differences in the execution times trends. For example, 
moving from the Paragon (i860 processors) to the T3D (DEC 
Alphas), PIC shows a little improvement in speed, while the 
Nbody, with its dominant integer manipulations and less memory, 
is showing up to one order of magnitude improvement. 

Tablel: 
Sample Serial Execution Times per Iteration on the 
Paragon 

PIC : 

Size time(m=32) time(m=64) 

256K 13.35 sec. 21.92 sec.  

1 M  (extrapolated) 45.93 58.31 
1M (real) 249.20 820.41 

512K 24.41 34. a 5  
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N-body : 

Size 

1K 
8K 
32K 

time 

5.77 sec. 
53.27 
237.51 

Table 2: 
Sample Serial Execution Time8 per Iteration on the T3D 

PIC : 

Size time (m=32) t ime (m=64 1 

256K 5.53 sec. 17.02 sec. 
512K 9.74 21.17 
1M 18.34 29.49 
2M (extrapolated) 35.18 46.12 

N-body : 

Size J ime 

1K 
8K 
32K 

0.53 sec. 
6.31 
30.90 

4.2 Paragon Mea8UrementS 
4.2.1 N-Body Measurements 

A number of experiments were conducted to reveal the behavior of 
the N-body application with respect to scalability and overhead. 
These were performed for different input data sizes as well as 
for different number of processors. Figure 3 summarizes the 
scalability measurements. In this figure, N-body scales nicely 
with the increasing number of processors, particularly when large 
data sets are used. This is consistent with the intuition driven 
from the way the parallel program works. In the used parallel 
program, building the tree was done sequentially at the manager 
node, recall the manager-worker model. This sequential part 
recpires traversixg t h e  tree enly m c e .  On the ether hand, 
computing the forces at each body was parallelized, which 
requires N traverses of the tree in the sequential case. With 
such N:l growth ratio in the parallel to the sequential parts, 
near-linear speed up is expected. However, due to the rising 
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communications cost associated with the centeralized construction 
of the tree, as the size of the machine grows and processors 
become more distant from one another, a gradual drop in 
efficiency is observed. 

Figures 4 through 6 report the overhead measurements for lK, 4K, 
and 32K bodies, respectively. As the number of processors 
increase, a corresponding increase of communications overhead and 
imbalance take place (Figure-4). While the costzone 
decomposition guarantees equal computational effort by all 
processors, the imbalance overhead continues to increase as more 
processors are used. This is a side effect due to the use of the 
manager-worker model, as distance variability from the manager 
increases with the increased number of workers. However, as the 
input data size gets larger, most of this overhead is amortized 
nicely, as shown in Figure 5&6. This is due to the rapid growth 
in the parallel part of the program, as pointed before. 
Redundancy overhead, on the other hand, has been minimal in all 
cases. 
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Measurements on the Paragon 

PIC measurements are summarized in Figure-7 through Figure-14. As 
one can vary both the grid size and the number of particles, 
measurements are reported for different number of particles and 
processors, considering two grid sizes, 32x32~32 (m=32) and 
64x64~64 (m=64). It should be mentioned that we have initially 
used the NX routine gssum (global sum of floating-point vectors) 
to make the global charge and electric field information 
available in every processor. However, since the grid 
computations require rapidly growing global communication and 
gssum seems to be implemented using many many-to-many 
communications, speed up dropped significantly with more than 8 
processors. Our measurements have shown that the gssm consumes 
most of the total communication time and does not scale well with 
the number of processors. It works very efficiently for 4- and 8 -  
processor partitions, but for 16- and 32-processor ones. On the 
other hand, it has been observed to scale well with the amount of 
data communicated. TO reduce the communication overhead, we have 
implemented our own global sum routine based on parallel-prefix 
algorithm using many one-to-one communications. As shown in 
Figures 7 and 8, the resulting code exhibits good scalability, 
which becomes better as the simulation size is increased because 
of better amortized communication overhead. Also, figure 7 
generally exhibits better speedup factor, than that of 8. This 
is due to the increase of global communications associated with 
the increased size of the grid. 
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In Figures 7 and 8, the uniprocessor time was obtained through 
extrapolation for the cases of 1M and 2M particles, at which 
excessive paging was observed. This is necessary to reflect 
realistic projections of speedup, non superlinear, when 
sufficient memory is available. Superlinear scalability could 
also occur due to improved caching when data is partitioned over 
processors in a multiprocessor system. Figure 9, however, was 
obtained by direct measurements to examine the superlinear effect 
of paging. In this figure, speedup increases suddenly for 
simulations that used more than 640K particles. This was due to 
the fact that excessive paging was occurring when the 
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The communication behavior is emphasized in Figure 10. This 
figure shows that there is not much difference between average 
and maximum times spent for communication during each iteration 
which indicates that communication activities are well balanced, 
due to the worker-worker model. 
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The performance budget graphs, Figures 11 through 14, show that 
the redundancy component is not substantial. Communication 
component grows quickly with increasing grid size and becomes the 
dominant activity when the data size is not large enough. 
Amortization of overhead can be seen by comparing Figure 11 with 
Figure 12, and Figure 13 with Figure 14. However, for the bigger 
grid size, the large increase in communications makes the 
overhead hard to hide by increasing the data volume 8 folds. 
Imbalance has been observed to be rather variant, increasing with 
the amount of communication but is negligibly small. 

4.3. MEASUREMENTS ON THE T3D 
4.3.1 N-Body Measurements 

In figure 15, the scalability of Nbody on the T3D is presented. 
The smaller comunication did not result in better scalability 
than the case of the Paragon, for 32 processors or less. This is 
due to the fact that the alpha processor is faster for Nbody, as 
shown in tables 1 and 2 ,  which makes the 
computation/communication ratio smaller, although the execution 
is faster. Figures 16-18, show the performance budget. The 
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ratio of the u s e f u l  work is again small as compared to the 
Paragon due to the  f a s t  processor. 
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Figure 17. N-Body Performance Budget for 4K particles. 
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4.3.2 PIC Measurements 
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On the T3D, PIC simulation presents a better overall "picture". 
in terms of execution times. The iteration time is about 30% of 
that on the Paragon, although the NX routines are considered to 
be superior to PVM calls. Clearly, processor and network speed 
are dominant factors. Figures 19 and 20 indicate that the 
scalability is greatly affected by the communication component, a 
fact supported by performance budget figures as well. When the 
ratio of the data to be processed to the number of grid points to 
be communicated is large enough, the code scales quite well 
(figure 19). Communication time exhibits a smooth slope with 
increasing data sizes. The performance budget figures, on the 
other hand, include smaller portions of useful work than ones on 

Characteristically, the execution accross the processors are  
again well-balanced and redundancy is negligibly small. 

the Paragon, showing the negative effect of PVM . 

5. OBSERVATIONS AND CONCLUSIONS 

In addition to the presented measurements, c**y uI day-to-day 
experience throughout this study has revealed many issues. We sum 
the experiences and observations with the following conclusions. 

5.1. Effect of Programming Model 
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The use of the manager-worker model in the N-body code has 
resulted in many experiences that are quite different from those 
with worker-worker model used in PIC. In N-body, the model used 
resulted in some imbalance overhead, although the workload was 
intentionally balanced using the costzone method. The observed 
imbalance was due to the focal point of communication created by 
the manager and the variability of the communication distances 
from arbitrary nodes to the manager. On the other hand, the 
worker-worker model balanced the communications in the PIC 
implementation. However, balanced communication when coupled with 
many-to-many communications transactions means increased 
conflicts and performance loss as the case in the original gsum 
implementation. 

5.2. Effect of Memory Management 

Again, superlinear scalability can be observed due to improved 
caching and less frequent paging in parallel system. It would be 
of interest to investigate a scalability model which takes such 
memory-related factors into account. 

5.3. Effect of Programming Style 

Parallel program performance seems to be unusually susceptible to 
programming style. We have already addressed the effect of using 
different programming models. In addition, it has been noted 
during this study that depending on the programmer, some types of 
overhead can become more dominant than others. In fact, in many 
cases, reducing one type of overhead comes at the expense of 
increasing other types of overhead. For example, in many cases 
communications can be replaced by redundancy and vice versa. A 
general rule, however, is that redundancy is cheaper than 
communications, in most cases. 

5.4. Physical Effects 

One phenomena that was observed in the Paragon, was that the 
speed of a specific problem might differ based on which partition 
of the machine is used. This was the case even when the same 
number of nodes and the topology of the partition is maintained. 
After repeated measurements and investigations, it was found that 
processors that are physically closer to the cooling system tend 
to run slower than those that are farther away [131 .  Up to 7% 
variability in execution time was observed and attributed to this 
phenomena. 

5 . 5 .  CONCLUSIONS 

In this study some of the sources of overhead were identified and 
measured for real applications selected from NASA ESS domain. 
Among the observed sources of overhead are the programming model, 
programming style, and the communications patterns. With the 
sophistication of multicomputers and in the light of the lack of 
comparably powerful compiler technology, parallel machines are 
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much less forgiving than uniprocessor environments. Subtle 
changes in programs can increase or decrease overhead 
significantly. Some types of overhead can be reduced by 
following better programming practices and some can be reduced by 
converting them to less costly overhead activities. The dominant 
type of overhead is communications and could be in many cases a 
real challenge to scalability. While it is not considered a good 
programming practice, duplication redundancy can effectively help 
reduce the effect of communications. Efficiency in most of the 
cases, specially when data sets were large enough, was greater 
than 50% which indicates that progress in high-performance 
computing is consistent with the needs of scientific parallel 
simulations. 
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A bstract 
Experimental design of parallel computers calls for quantifiable methods to compare and evaluate the 
requirements of different workloads within an application domain. Such metrics can help establish 
the basis for scientific design of parallel computers driven by applications needs, to optimize 
performance to cost. In this paper, a framework is presented for representing and comparing 
workloads, based on the way they would exercise parallel machines. This workload characterization 
is derived from parallel instruction centroid and parallel workload similarity. The centroid is a 
workload approximation which captures the type and amount of parallel work presented by the 
workload on the average. The workload similarity is based on measuring the normalized Euclidean 
distance between workload centroids. It will be shown that this method outperforms comparable ones 
in accuracy as well as in time and space requirements. An analysis of the NAS parallel benchmark 
workloads will be presented in order to demonstrate the utility and insight provided within this 
framework. 
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1. Introduction 
The design of parallel architectures should be based on the requirements of real-life production 
workloads, in order to maximize performance to cost. One essential ingredient in this is to develop 
scientific basis for the design and analysis of parallel benchmark suites. The design of such p d e l  
benchmark suites should be founded on criteria that establish an association between the benchmark 
test suite and the target production workloads it represents. Selection of test workloads from an 
application domain must be determined by specific metrics that delineate the salient equivalencies and 
distinctions among candidate test codes. Previous efforts have addressed the problem of 
characterizing and measuring specific aspects of parallel workloads. Depending on the irrespective 
objectives, these efforts have quantified different attributes such as the total number of operations, 
average degree of parallelism, or instruction mixes [ 1-15]. However, unresolved still is the means to 
characterize parallel workloads based on how they are expected to exercise parallel architecture. Such 
characterization has to be valid across a wide-range of parallel architectures, in order to focus on the 
applications and their requirements. Therefore we propose an application characterization which 
takes into account the type of operations and operation counts presented to the machine on a cycle-by- 
cycle basis, as given by the dynamic parallel instruction sequence in workloads. With this in place, 
the similarity among each pair of workloads is measured using the normalized Euclidean distance, a 
computationally efficient technique for pattern matching. 

Since measuring parallel instructions is of interest to this study, we consider efforts that examined 
instruction-level parallelism. Researchers have measured instruction-level parallelism to try different 
parallel compilation concepts and study their effect on parallelism. Most of these studies measured the 
limits of (average) parallelism under ideal conditions, such as the oracle model where parallelism is 
only limited by true flow dependencies. Then, they examined the drop in parallelism when specific 
architectural or compilation implementation concepts were introduced into the model. 

Studies on instruction-level parallelism have taken one of two approaches. One approach is to analyze 
the selected workload statically at the source-code level (or object-code with a special interpreter based 
on a certain machine) [l-31. The other approach is to collect dynamic traces from actual execution and 
schedule the instructions on the target machine model [4-121. The static analysis of workloads tends 
to give conservative estimates for available parallelism since control dependencies can be only 
resolved at run time. On the other hand, the dynamic analysis of workloads using speculative 
execution and branch prediction [ 161 can measure the amount of parallelism which theoretically exists 
in a given workload. Although the scope was different in these studies, the techniques are of interest 
to our work as alternative means of measuring parallelism. Many researchers have observed that 
benchmarking should become more of a scientific activity [ 171. Due to the necessity of parallelism for 
achieving good performance, this work develops a well founded parallelism-based workload 
representation and comparison framework. This framework provides meaningful information to 
designers and users of high-performance systems as well as to parallel benchmarking developers and 
performance analysts. 

In this work we only consider workload characterization based on parallel instructions, which 
encompasses information on parallelism, instruction mix, and amount and type of work on a cycle- 
by-cycle basis. Bradley and Larson [18] have considered parallel workload characterization using 
parallel instructions. Their technique compares the differences between workloads based on executed 
parallel instructions (EPI). Executed parallelism is the parallelism exploited as a result of interaction 
between hardware and software. This technique is, therefore, an architecture-dependent technique 
due to its dependency on the specific details of the underlying architecture. In their study, a subset of 
the Perfect' Benchmarks has been chosen to run on the Cray Y-MP. Then a multidimensional matrix 
that represents the workload parallelism profile was constructed. The Frobenius mamx norm [29] is 
then used to quantify the difference between the two workload parallelism matrices. In addition to 
requiring a lot of space and time, this method is restricted to comparing identical executed parallel 
instructions only. 
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The technique proposed here, in contrast, uses the vector-space model 1191 to provide a single point 
(but multidimensional) representation of parallel workloads and measure the degree of similarity 
between them. The similarity is derived from the spatial proximity between workload points in that 
space and therefore provides a collective mure of similarity based on all instructions. In specific, 
each workload in a benchmark suite is approximated by a parallel-instruction centroid under this 
model. The difference between two workloads are quantified using appropriately normalized 
Euclidean distance between the two centroids. 

Architecture-invariance of our parallel-instruction vector-space model is derived from using the oracle 
abstract architecture model [4, 121. In order to simulate such an oracle, two major modules are used: 
an interpreter and a scheduler [ 12, 251. The interpreter accepts the assembly instructions generated 
from high-level code and executes it. The stream produced is passed to the scheduler which places 
each instruction at the earliest possible level for execution, based on the dependencies between the 
current instruction and the previously scheduled ones. The "two pass" nature of this process gives us 
the oracle. Or loosely speaking is to assume that an Oracle is present to guide us at every conditional 
jump, telling us which way the jump will go each reference, and resolving all ambiguous memory 
references [4]. Therefore, the oracle model is an idealistic model that considers only true flow 
dependencies. The parallel instructions (PI) are generated by scheduling sequential instructions that 
are traced from a RISC processor execution onto the oracle model. The traced instructions are packed 
into parallel instructions while respecting all flow dependencies between instructions. To compare 
our technique with the parallelism-matrix method, we consider an extended version of the parallelism- 
matrix technique which is made architecture-invariant by replacing the Cray Y-MP simulator with the 
oracle model. 

In this paper we present the concept of parallel-instruction vector space model and a parallel- 
instruction workload similarity measurement technique. We compare this technique to the parallelism- 
matrix method [ 181. It will be shown here that our method is machine-invariant and better represents 
the degree of similarity between workloads. Further, the technique is very cost efficient when 
compared with similar methods. We also show that the parallel-instruction vector space model 
provides a useful framework for the design and analysis of benchmarks. This is demonstrated by 
analyzing some of the NAS Parallel Benchmark workloads [20, 211 and their performance 
measurements using this model. The NAS Parallel Benchmark (NPB) suite is rooted in the problems 
of computational fluid dynamics (CFD) and computational aerosciences. It consists of eight 
benchmark problems each of which is focusing on some important aspect of highly parallel 
supercomputing, for aerophysics applications 122,231. This paper is organized as follows. Section 2 
presents an overview of previous work, while section 3 presents our parallel-instruction vector space 
model in details. The comparison between the two techniques is discussed in section 4. Experimental 
measurements for the NAS Parallel benchmarks will be presented in section 5 .  Finally, conclusions 
are given in section 6. 

2. The Parallelism-Matrix Workload Representation 
This technique represents an executed-parallelism workload profile in a multidimensional m a m x  (n- 
matrix). Each dimension in this n-matrix represents a different instruction type in a workload. 
"Work", in this section, has been defined to be the total number of operations of interest a workload 
can have [18]. When there is only one instruction type of interest, work is considered to be the total 
operations of that type in a workload. Therefore, a natural extension to the simple post-mortem 
average is a histogram W = < W o ,  ... , W', where Wi is the number of clock periods during which i 
operations of interest type were completed simultaneously. The sum 

f 

t = p M  (1 
i=O 

is the number of clock periods consumed by the entire workload, and the weighted sum 
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FP 
0 1 2 3 

M 3 0.01 0.03 0.03 0.00 
E 2 0.05 0.13 0.08 0.00 
M I 0.07 0.20 0.11 0.00 

0 0.07 0.13 0.07 0.02 

I 

w = C iWi (2) 
is the total amouAyLf work performed by the workload. To facilitate comparisons between workloads 
that have different execution times, each entry in the histogram is divided by t, the total execution time 
in clock periods, to produce a normalized histogram called the parallelism vector P = <Po , , P p ,  
where Pi = Wi/t. By construction, each entry Pi has a value between 0 and I that indicates the fraction 
of time during which i units of work were completed in parallel. 

I m  n 

Intuitively, the Frobenius norm represents the "distance" between two matrices, just as the Euclidean 
formula is used to measure the distance between two points. This distance may range from 0.00, for 
two workloads with identical executed parallelism distributions, to f l  in the case where each matrix 
has only one non-zero element (with value 1.00) in a different location. Thus, the numbers produced 
by this method do not scale in way that can provide an intuitional understanding to the degree of 
similarity. Further, should two workloads be 100% dissimilar, they can still produce different 
numbers. Additional problems that relate to the processing and memory cost of this method are 
addressed in section 4. 

3. The Parallel-Instruction Vector-Space Model 
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Our Parallel-Instruction Vector Space Model is presented here provides for an effective workload 
representation (Characterization), as will be shown. Effectiveness, in this regard, refers to the fidelity 
of the representation and the associated space and time costs. In this framework, each parallel 
instruction can be represented by a vector in a multidimensional space, where each coordinate 
corresponds to a different instructiodoperation type (I-type) or a different basic operation (ADD, 
LOAD, FMUL, ...). The position of each parallel instruction in the space is determined by the 
magnitude of the I-types in that vector. 
Parallel Workload Instant and Parallel Work: The workload instant for a parallel computer 
system is defined here as the types and multiplicity of operations presented for execution by an 
idealistic system (oracle model), in one cycle. A workload instant is, therefore, represented as a 
vector quantity (parallel instruction) where each dimension represents an operation type and the 
associated magnitude represents the multiplicity of that operation in the parallel instruction. Parallel 
workload of an application is the sequence of instances (parallel instructions) generated from that 
application. 
Workload Centroid: The centroid is a parallel instruction in which each component corresponds to 
the average occurrence of the corresponding operation type over all parallel instructions in the 
workload Centroid, therefore, can be thought of as the point mass for the parallel workload body. 
Workload Similarity: Two workloads exhibited by two applications are, thus, considered 
identical if they present the machine with the same sequence of parallel instructions. In this case both 
workloads are said to be exercising the machine resources in the same fashion. 

3.1 The Vector-Space Workload Representation Model 
Consider three types of operation (I-types) such as arithmetic operations (I"'), floating-point 
operations (Fp), and memory access operations (MEM), then the parallel-instruction vector can be 
represented in a three-dimensional space as a triplet: 

If a parallel instruction in a workload is given by 

then this ith parallel instruction in the workload has 4 MEM operations, 7 F'P operations, and 2 INT 
operations. The total operations in this parallel instruction would be 13 operations that can be run 
simultaneously. In general, parallel instructions are represented as t-vectors of the form 

where the coefficient Uik represents the count of operations of type k in parallel instruction PIi. 
Comparing workloads based on sequence of parallel instructions could be quite complex and 
prohibitive, for realistic workloads. This is because the comparison requires examining each p a d e l  
instruction from one workload against a l l  parallel instructions in the other workload, which has very 
high computational and storage requirements. This has led us to propose the concept of centroid for 
workload representation and comparison, which is a cost-effective means to represent workloads, see 
Figure 2. 

PI = (MEM, FP, IW). 

PIi = (4, 7,2), 

PIi = (ail , ai2 , ... , ail) (4) 
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PI2 
PI3 

X' 

PI1 = (Ill, m, Il3) 

P12=(IT1', IlZ, ITT) 

M 

Pln= (/Tl", IT2: Il3") 
FIGURE 2: Vector representation ofparallel instructions and their centroid in a 3-space. 

The centroid is a parallel instruction in which each component corresponds to the average occurrence 
of the corresponding operation type over all parallel instructions in the workload. Given a set of n 
parallel instructions constituting a certain workload, the corresponding centroid vector is c = (CII, CI2, ... , CIt) (5) 

where: CIk = I /n  ak (6) 
n 

To illustrate the above,%gure 3 shows the steps to generate a centroid vector for a workload. 

0 2 0 3 1 
0 7 0 2 1 

I-Type1 I-Type2 
C 113 4 

Figure 3: Example of the workload representation. 
In addition to simplifying the analysis, centroids have the quality of providing an easy way to grasp 
the workload characteristics and the corresponding resource requirements. This is because the 
centroid couples instruction-level parallelism and instruction mix information to represent the types 
and multiplicity of operations that the machine is required to perform, on the average, in one cycle. 
This also represents the functional units types and average number of them needed in the target 
machine in order to sustain a performance rate close to the machine's peak rate, under such kind of 
workloads. Due to their simplicity and physical significance, as discussed above, centroids are used 
in the rest of this work as the basis for workloads representation and comparisons. 

I-Type3 I-Type4 I-Type5 
0 3 213 

3.3 Workload Comparison Using the Vector-Space Model 
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Measuring similarity based on centroids mandates the selection of a similarity memc which can 
generate easy to understand numbers. To do so, we propose the following metric characteristics: 

(1) Metric generates normalized values between 0 and 1. 
(2) "0" represents one extreme (e.g. similar), while "1" represents the other extreme (e.g. 
dissimilar). 
(3) Scales appropriately between these two extremes as the similarity between the compared 
workloads changes. 

This leads us to select the normalized Euclidean distance between two centroids, representing two 
different workloads, as follow. Let point u be the t-tuple (a i ,  a2, , at) and point v be the t-tuple 
(bl, b2, ..., bt); then the Euclidean distance, from Pythagoras' theorem, is 

d(u,v) = ,/(ar- b) '  +( a2- b2)'+ ...+( a -  bt)'  (7) 

In order to conform with the aforementioned memc characteristics, the distance between any two 
workloads in a benchmark suite can be normalized by dividing the distance between the two 
workloads by the maximum distance found in that two workloads, from the origin. Let WLr and 
WL, be two workloads in a benchmark suite, where each can be characterized by a t-centroid vector (t 
instruction types) as follows: 

WLr = (CIr1, CIr2 , ..., CIrt), and 
WL, = (CISI ,  CIS2 , ... , CISt). 

And let CIik represent the centroid magnitude of the kth instruction type in workload i. The maximum 
centroid-vector in this workloads can be represented as follows. 

Cm&WL, , WLS) = (ma(CIr1,CIsl), ... , ma(Cl,t,Clst)) 
Then, the Similarity between the two workloads can be measured as: 

Sim(WLr,WLs)=d(WLr,WLs) I d(Cmax, null-vector) (9) 
where null-vector (origin) is a t-vector in which each element equals to 0; hence, null-vector = 
(O,O, ..., 0). In this case, 0 represents identical workloads while 1 represents orthogonal workloads 
that use different operations and thus, would exercise different aspects of the target machine. 

(8) 

4. Comparison Study for the Two Techniques 
4.1 Examples 
Sample examples have been developed in order to demonstrate how the two techniques compare. Let 
us have a benchmark suite that consists of five workloads (WLI ,  ... , WLg).  Each workload is 
presented in a table of size i x j, where i is the total number of unique parallel instructions in the 
workload andj has a length o f t  + I. Each one of the t columns represents an operation type @EM, 
FP, 1"'). The additional column, #PIS, represents the total number of instances for that unique 
parallel instruction. For example, #PIS = 5 means that there are five instances of a particular parallel 
instruction in a workload. 

Workload-1;  Work lo ad-2 : 
#PIsMEM FP I N T  #PIsMEM F P  I N T  
5 1  0 1 2 0  1 1 
3 0  1 0 3 1  1 0 
7 1  0 0 I 1  0 1 
2 0  0 1 5 1  1 1 

Workload-3;  Workload-4;  
#PIsMEM FP I N T  #PIsMEM FP I N T  
5 3  2 1 3 4  3 2 
7 4  3 0  I 3  4 2 
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M 3 0.00 0.00 0.00 0.00 
E 2 0.00 0.00 0.00 0.176 

M 1 0.00 0.00 0.00 0.00 
0 0.00 0.00 0.00 0.00 * 

2 2  
3 2  

3 1 2 4  4 1 
3 0  5 4  4 2 

Workload-5: 
#PIsMEM FP I N T  
3 0  2 0  
7 2  0 0  
5 1 0 2  
2 0  0 2  

4.2 Parallelism-Matrix Measurements 
In the parallelism-matrix technique, each workload parallelism profile is presented in a three- 
dimensional matrix (since there are only three types of operations). For example, workload WL3 is 
illustrated in Figure 4 by spreading the INT-dimension layers of the three-dimensional matrix over 
two layers for readability. 

FP 
0 1 2 3 

4 0.00 0.00 0.00 0.00 
M 3 0.00 0.00 0.294 0.00 

E 2 0.00 0.00 0.00 0.118 

I A4 1 0.00 0.00 0.00 0.00 
I 0 0.00 0.00 0.00 0.00 

(bk Parallelism matrix when 2 INT-twe used! 
Figure 4f Parallelism-matrix representation fTr workload WL3. 

Figure 4.a represents the Zst INT layer where no INT operations are in the corresponding parallel 
instruction. Figure 4.b represents the 2nd INT layer when only one INT operation is in the parallel 
instruction. 

To compare two workloads, the Frobenius matrix norm [29] is used in order to quantify the distances 
or differences. Recall that the parallelism-matrix technique has been extended to be architecture- 
invariant for comparisons with the parallel-instruction vector space model. As mentioned before, the 
Frobenius ~lorrn ranges !xti.veen 0.00 and -E, therefore, it will be divided by that value. T&le 1 
presents similarity measurements for some pairs of workloads in the benchmark set. 

Table 1: Similarity measwemetits using purullelism-matrix technique. 
I I Patallelism-Matrix 1 
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WL1& W L 2  0.424 
' W L l & W L 3  0.549 
' WL1& W L q  0.549 
W L l &  W L g  0.549 
WL3& W L q  0.549 

I Parallel-Instruction7 
Vector Space 

WL1& W L 2  0.453 18 
WL1& W L 3  0.8425 
WL1& W L q  0.875 1 
WL1& W L g  0.1804 
WL3& W L q  0.65 

Table 3 presents similarity measurements for some pairs of workloads in our benchmark suite when 
the parallel-instruction vector space model is used. Note that I .OO means dissimilar and 0.00 means 
identical. 

Table 3: Similarity 

4.4 Discussion 
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Parallelism. Parallel-Instruction 
Matrix Vector Space 

WL1& WL2 0.424 0.453 18 
WL1& WL3 0.549 0.8425 
W L I &  WL4 0.549 0.875 1 
WL1& WLg 0.549 0.1804 
WL3& WL4 0.549 0.65 

L 

The similarity among the workloads in the example suite can be examined quantitatively using 
similarity functions, expressions (3) and (9). Table 4 shows the quantitative similarity for some pairs 
of workloads when the two techniques are used. Note that similarity in parallelism is not a transitive 
relation. 

In general, the parallel-instruction vector space method presents more detailed information. For each 
workload centroid, each attribute represents an arithmetic mean of a type of instruction in the 
workload. By comparing this centroid to other workload centroid, each matching attribute will be 
compared. This comparison tells in which direction these two workloads are different. Considering 
workloads WLI and WL3, along the arithmetic instruction type, these two workloads exercise the 
oracle model in the same manner. However, at the floating-point instruction type, WL3 uses more 
floating-point functional units than WLI . 

The parallel-instruction vector space method is also more efficient in time and space. After producing 
parallel instructions, both techniques make two steps in order to measure the workload similarity. 
The frst step is workload representation, and the second is workload comparison. The parallelism- 
matrix technique represents a workload in a t-dimensional matrix where each dimension represents an 
instruction type. The maximum magnitude of a dimension is t i  + I, where n represents the maximum 
instruction type occurrences in any parallel instruction in that workload. Therefore, the parallel matrix 
technique needs as much storage as the size of the matrix. This has storage complexity of O(tzt). On 
the other hand, the parallel-instruction vector space model represents a workload by a centroid of 
length t. The time for workload 
representation, in the parallelism-matrix technique, takes the parallel-instruction counts (p) times the 
parallel-instruction length (t), or O(y0t). This is because all parallel insauctions have to be generated 

Therefore, the storage complexity of this technique is O(f) .  
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first, before constructing and filling the matrix. However, in the parallel-instruction vector space 
model, the computational complexity is Oft). This is due to the fact that the workload centroid is 
calculated on-the-fly. 

In the comparison step (measuring similarity), the parallelism-ma& technique compares every 
element of one matrix with the corresponding element in the other matrix. Therefore, the 
computational complexity of this technique is O(nt). In the parallel-instruction vector space model, 
however, the computational complexity is O(t). This is due to the fact that the workload centroid has t 
types of instructions. 

Table 5 summarizes the comparative study between the parallelism-mamx technique and the parallel- 
instruction vector space technique. It shows that our parallel-instruction vector space model 
outperforms the parallelism-matrix technique for measuring the workload similarity in all essential 
aspects. 

p: parallel-instruction count. 
t: parallel-instruction size. 

n: maximum dimension length. 

5. NAS Parallel Benchmark Experimental Workload Comparison 

In order to demonstrate the potential utility of this model and verify the underlying concepts with 
real-life applications we consider to study the NAS Parallel Benchmark suite [22, 233 using our 
model. We start by representing the workloads in this suite using parallel instruction centroids. 
Then we characterize the similarity among different workload pairs using the normalized Euclidean 
distance approach. Finally, we demonstrate that in real-life workloads, such as those of NPB, 
parallelism smoothability is high enough to use average degree of parallelism to represent parallel 
activities, as in the centroid. 

5.1 A NAS Parallel Benchmark Overview 

The NPB suite consists of two major components: five parallel kernel benchmarks and three 
simulated computational fluid dynamics (CFD) application benchmarks. This benchmark suite 
successfully addresses many of the problems associated with benchmarking parallel machines. 
They intended to accurately represent the principal computational and data movement requirements 
of modern CFD applications. An exhaustive description of these NPB problems is given in [20- 
231. 

In order to keep traces and analysis time within practical limits, we have used the short input files 
provided by the NAS Parallel Benchmark suite. The sample codes, provided by NAS, actually 
solve scaled-down versions of the benchmarks that run on many current-generation workstations. 
The standard input sizes for the NPB suites referred to as the Class A and Class B size problems. 
Table 6 lists the problem size [20] and the dynamic operation counts of  the sample code problems, 
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the Class A problems, and Class B problems. Operation counts are obtained using the spy tool 
~ 4 1 .  

Table 6: Operation Counts for NAS "Sample, Class A, arid Class B" Benchmarks 

5.2 Experimental Measurements Tool and Process 

In order to explore the inherent parallelism in workloads, instructions traced are scheduled for the 
oracle model architecture. This model presents the most ideal machine that have unlimited processors 
and memory, and does not incur any overhead. The Sequential Instruction Trace Analyzer (SITA) is 
a tool developed at McGill University by Kevin Theobald to measure the amount of parallelism which 
theoretically exists in a given workload [ 12, 251. SlTA takes a dynamic trace generated by spy tool 
from a sequential execution of a conventional program, and schedules the instructions according to 
how they could be executed on an idealized architecture while respecting all relevant dependencies 
between instructions. Currently, SlTA is used to analyze SPARC executables and is designed to 
work with spy tool, which is the only tool needed from the Spa package [24]. SlTA tool includes a 
pre-analyzer (sitapu), a controldependence analyzer (sitadep), and a trace scheduler(sitarun). Note 
that traced processes have been observed to run about 40 times slower than normal. If spy is used 
with a trace analyzer, such as sitapa or sitarun, the resulting system will run some 400-600 times 
slower than normal (400 for oracle and 600 for other models). 

The analysis process of a SPARC workload or benchmark takes four steps. First, a SPARC 
executable file is created, using the desired optimization level. The results will be more meaningful if 
the program is statically linked. This eliminates the spurious instructions used in linking a program to 
the libraries. Secondly, a pre-analyzer (sitapa) is run with spy and executable to extract a list of basic 
blocks and frequencies of the workload, which is then read by the control-dependence analyzer 
(sitadep) to produce an annotated list, as the third step. This annotations include control-dependency 
relationships between the blocks and destination frequencies. Finally, the scheduler (sitarun) is run 
with the annotated list as input, and generally with spy and executable. The scheduler produces 
output indicating the parallelism available for the given input trace under the given oracle model. 
There are 69 basic instruction operations in SPARC. These instructicm mainly fall hito five basic 
categories: load/store (Memops), arithmetic/logic/shift (Intops), control transfer (Branchops), 
readwrite control register (Controloys), and floating-point operate (Ff ops). Therefore, each parallel 
instruction presented by a vector of length five [26]. 

5.3. Workload Centroids for NAS 

12 



13 

Parallel-instruction centroid vectors can reveal differences in 
distinguished by averages of parallelism degrees as shown in 
behavior of two workloads can be efficientlv comDared bv 

workload behavior that can not be 
Table 7. Therefore, the parallelism 
using the aforementioned uarallel- 

instruction vector space model and the simildty funition, eipression (9). to quantify the s h a r i t y  
between these workloads. 

5.4 Similarity Measurements 

Table 8 quantifies the similarity between each pair of benchmarks in the NAS Parallel Benchmark 
suite, using expression (9). Again, note that the similarity in parallelism is not a transitive relation. 
We first compare appsp and appbt, two workloads that are representative of computations 
associated with the implicit operators of CFD codes such as ARC3D at NASA Ames. The 
relatively high value, 0.64, of the similarity in parallelism illustrates that these two workloads have 
different parallelism behaviors. Next we consider buk, a workload representing the application 
area of integer sorting, and cgm, this workload is typical of unstructured grid computations. 

Therelatively low value of the similarity in parallelism behavior, 0.319, illustrates that these two 
workloads have relatively similar parallelism properties. Although the two workloads come from 
different application areas, each workload is expected to exercises target machines with a very 
similar mix of parallelism. The same conclusion of might be also drawn from the measurement, 
0.39, of the similarity in parallelism between embar and fftpde workloads. 

5.5 Parallelism Snrootbability of ATAS and Implications 

Smoothability [ 121 is memc designed to capture the effect of parallelism profile variability around 
the average degree of parallelism. It is basically the ratio of execution time with no restriction on 
the number of processors to the execution time when the number of available processors is limited 
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to the average degree of parallelism. Fortunately, SITA has the ability to limit the number of 
operations which can be packed into one parallel instruction, and thus allow measuring 
smoothability . 

The interest in smoothability stems from the fact that the centroid is based upon the average degree 
of parallelism for each type of operation. Therefore, for centroids to be a good representation of 
workloads, those workloads should have relatively high smoothability (close to 1). In this section 
we show that the majority of real-life applications, such as those represented by NAS, have high 
smoothability . 
In Table 9 we list the parallelism results for the NAS parallel benchmark workloads running on the 
oracle model including the smoothability values. Our results indicate that the parallelism obtained 
has a relatively smooth temporal profile which exhibits a high degree of uniformity in the 
parallelism except for the buk benchmark. In all cases, but the buk benchmark, the smoothability 
is better than 70%. In addition, we list the average operation delay, Le., the average number of 
parallel instructions by which each operation is delayed before it can be executed. (The average 
includes instructions which are executed as soon as they are ready, which are counted as 0.) Low 
numbers, as with mgrid and appbt, indicate that the application is already fairly evenly distributed 
in time, so not much "smoothing" is needed. High numbers, as with embar and buk suggest that 
many operations are being delayed a long time before being executed. The high smoothability 
numbers, however, suggest that delays do not significantly increase the lengths of critical paths. 
Most importantly, in the context of this study, the smooth temporal behavior supports the fidelity 
of representing practical workloads using parallel instruction centroids. 

6. Conclusions 

This paper introduced a parallelism-based methodology for an easy to understand representation of 
workloads. The method is architecture-invariant and can be used effectively for the comparison of 
workloads and assessing resource requirements. A method for comparing workloads based on the 
notion of centroid of parallel instruction was introduced. This method uses the nornaked Euclidean 
distance to provide an efficient means of comparing the workloads. The notion of centroid coupled 
with distance (similarity) among pairs of workloads provide the basis for quantifiable analysis of 
workloads to make informed decisions on the composition of parallel benchmark suites. Analysis of 
existing benchmarks is also provided for by this model in which the centroid sheds light on the 
hardware resource requirements and how the benchmark is exercising the target machines, and the 
distance among workload pairs allows identifying possible correlation. 

A comparative study between tlie pamiMisrn-rnamx technique and our parallel-instruction vector 
space model was also presented. It was shown that the parallelism-matrix technique depends only on 
identical rather than similar parallel instructions. However, the introduced parallel-instruction vector 
space model takes all parallel instructions into account when representing workloads and their 
similarities. Furthermore, while the parallelism-matrix technique requires O(p0r) computational time 

14 



a 

15 

for workload representation, the parallel-instruction vector space model requires only O(t). 
Considering the storage requirements, the parallelism-matrix technique needs O(nt) memory space, 
whereas the parallel-instruction vector space model needs only O(t}. In addition, when two 
workloads are compared, the computational cost in the parallelism-matrix technique is O(nt). On the 
other hand, the parallel-instruction vector space only requires O(t) computational time. Hence, the 
parallel-instruction vector space model does not only provide more accurate, but also more cost- 
effective parallelism-based representation of workloads. 

The parallel-instruction workload model was used to study the similarities among the NAS Parallel 
Benchmark workloads in a quantitative manner. The results c o n f m  that workloads in NPB represent 
a wide range of non-redundant applications with different characteristics. It was also shown from the 
NPB results that parallel instruction centroids provide good approximation of workloads due to the 
fact that most practical workloads have smooth parallelism profiles. 
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